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ABSTRACT

Proactive quality control (PQC) is a fully flow dependent QC based on ensemble forecast sensitivity to

observations (EFSO). Past studies showed in several independent cases that GFS forecasts can be im-

proved by rejecting observations identified as detrimental by EFSO. However, the impact of cycling PQC

in sequential data assimilation has, so far, only been examined using the simple Lorenz ’96 model. Using a

low-resolution spectral GFS model that assimilates PrepBUFR (no radiance) observations with the local

ensemble transform Kalman filter (LETKF), this study aims to become a bridge between a simple model

and the implementation into complex operational systems. We demonstrate the major benefit of cycling

PQC in a sequential data assimilation framework through the accumulation of improvements from pre-

vious PQC updates. Such accumulated PQC improvement is much larger than the ‘‘current’’ PQC im-

provement that would be obtained at each analysis cycle using ‘‘future’’ observations. As a result, it is

unnecessary to use future information, and hence this allows the operational implementation of cycling

PQC. The results show that the analyses and forecasts are improved the most by rejecting all the ob-

servations identified as detrimental by EFSO, but that major improvements also come from rejecting just

the most detrimental 10% observations. The forecast improvements brought by PQC are observed

throughout the 10 days of integration and provide more than a 12-h forecast lead-time gain. An important

finding is that PQC not only reduces substantially the root-mean-squared forecast errors but also the

forecast biases. We also show a case of ‘‘skill dropout,’’ where the control forecast misses a developing

baroclinic instability, whereas the accumulated PQC corrections result in a good prediction.

1. Introduction

To allow efficient estimation of the impact of indi-

vidual observations in data assimilation (DA), a family

of forecast sensitivity to observation (FSO) techniques

has been developed in the literature. These techniques

construct a mapping between the observation innova-

tions and the resulting short-term forecast error changes

due to DA using various approaches. The adjoint-based

FSOwas first formulated by Langland andBaker (2004),

using the adjoint model to propagate back (to observa-

tion time) future forecast error changes, and attributing

the error changes to each individual observation by

minimizing a cost function as in variational DA. The first

ensemble equivalent of the adjoint FSO was developed

by Ancell and Hakim (2007) and Torn and Hakim

(2008). Their formulation requires a first-order approx-

imation of the response sensitivity to the change in model

states, and the observational impact is calculated one ob-

servation at a time similar to the serial update inWhitaker

and Hamill (2002) to avoid inverting an O 3 O matrix,

where O is the number of observations. A new formu-

lation was then introduced in Kalnay et al. (2012) which

requires no such approximation and calculates the im-

pact of all observations at once at the expense of in-

cluding an extended forecast, which is available from the

long forecasts performed in operation. This ensemble

FSO (EFSO) approach directly maps, using the readily

available ensemble forecasts from the DA system, the

forecast error changes between two consecutive fore-

casts by DA to each individual observation. Recently,

a hybrid approach (HFSO; Buehner et al. 2018) was

developed that projects the forecast sensitivity to anal-

ysis using the ensemble forecasts as in EFSO, but
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computes the observational impact throughminimization

of a cost function as in the adjoint FSO. This approach

was designed to be consistent with the ensemble-

variational (EnVar) DA systems.

Several operational centers and research groups have

implemented at least one of the approaches of FSO to

compare the impact of different observing systems on

modern DA systems (e.g., Zhu and Gelaro 2008;

Cardinali 2009; Gelaro et al. 2010; Lorenc and Marriott

2014; Ota et al. 2013; Sommer and Weissmann 2014).

Other studies have explored the applications of FSO

impacts. It was shown in Lien et al. (2018) that the long-

term-averaged EFSO impact provides detailed infor-

mation for optimizing data selection and the design of

quality control procedures. Kotsuki et al. (2017) found

that using EFSO impact as an ordering method in a se-

rial ensemble square root filter for the Lorenz (1996)

model significantly improved the analysis accuracy.

Proactive quality control (PQC; Ota et al. 2013; Hotta

et al. 2017) was proposed to allow the rejection of det-

rimental observations based on their EFSO impact, in

order to improve the quality of both the analyses and the

forecasts. Using the spectral Global Forecast System

(GFS) from the National Centers for Environmental

Prediction (NCEP), Ota et al. (2013) and Hotta et al.

(2017) demonstrated with many independent cases, us-

ing 24 and 6h, respectively, as the EFSO verifying lead

time, that denying the detrimental observations iden-

tified by the regional EFSO impact significantly re-

duced the resulting forecast error. Chen et al. (2017),

using the same cases as in Hotta et al. (2017), found

that rejecting detrimental observations based on

global EFSO impact rather than regional impact pro-

vided significantly more improvement. Chen and

Kalnay (2019), hereafter CK19, further explored cy-

cling PQC in an idealized environment using the

Lorenz (1996) model. The idealized experiments

clearly showed that among all the deficiencies tested

in the DA system, the cycling PQC improvement re-

sponded only to those present in the observations,

suggesting that PQC effectively removes the impact

from the detrimental observations.

In this study, we use a low-resolution spectral GFS

model coupled with the local ensemble transform

Kalman filter (LETKF; Hunt et al. 2007) and assimilate

real observations from theNCEPPrepBUFRdataset, as

in Lien et al. (2016, 2018). This study is a bridge between

the idealized Lorenz (1996) model used by CK19 and

the implementation of EFSO/PQC in a complex oper-

ational system. This system with intermediate com-

plexity allows the efficient exploration of the properties

of PQC in a realistic model assimilating real observa-

tions. Section 2 briefly reviews the EFSO formulation

and the PQC algorithm. The experimental design is

covered in section 3. The results are shown in section 4,

followed by the summary and discussion in section 5.

2. EFSO formulation and PQC algorithm

Kalnay et al. (2012) derived a simple ensemble fore-

cast sensitivity to observations (EFSO) that estimates

for each observation whether its assimilation is benefi-

cial or detrimental to the subsequent forecast [i.e.,

whether the assimilation of each observation decreases

or increases the forecast error, measured, e.g., by the

total energy of the error [see Eq. (8)]. If the EFSO value

[Eq. (8)] is negative, it indicates that the error has been

reduced, and the observation is beneficial. If the EFSO

value is positive, the observation increases the error, and

the observation is detrimental.

The EFSO formulation introduced here follows

Kalnay et al. (2012). In the context of sequential DA

with a window size of dt5 tn2 tn21, suppose we estimate

the impact of observations assimilated at time tn21

on forecast error changes at current time tn. We have

two consecutive forecasts xf
tnjtn22

and xf
tnjtn21

initiated

from time tn22 and tn21, both valid at the verification

time tn. In practice, the truth for calculating the forecast

error is unobtainable, and a verifying reference (e.g.,

the subsequent analysis used in this study) is required to

estimate the forecast error response to the data assimi-

lation. Then the associated forecast differences from the

subsequent analysis (as verifying reference) are

e
tnjtn22

5 xf
tnjtn22

2 xatn
, (1)

e
tnjtn21

5 xf
tnjtn21

2 xatn
, (2)

where xatn , used as verifying reference, is the posterior

estimate from the prior xf
tnjtn21

and the observations ytn at

time tn from the same experiment. In this setup, the later

analysis from the same run was used as the verification

reference, and the forecast errors were estimated using

the forecast difference terms etnjtn22
and etnjtn21

. While

acknowledging that they are not true errors but only an

estimation of such, we still refer to them as forecast er-

rors hereafter for simplicity. Other verifying references

for the EFSO calculation could be later observations

(e.g., Sommer and Weissmann 2016; Cardinali 2018;

Necker et al. 2018) or the analyses from independent

DA systems (e.g., Kotsuki et al. 2019).

The change between the two forecast errors is intro-

duced by the assimilation of the observations at time

tn21 using the analysis update equation:

xatn21
5 xf

tn21jtn22
1Kdy

tn21
, (3)
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dy
tn21

5 y
tn21

2Hxf
tn21jtn22

,

where K, H, dytn21
, and ytn21

are, respectively, the gain ma-

trix, the observation operator, the observation innovation,

and a vector of the observations. The gain matrix K can

be approximated with the ensemble of analysis pertur-

bations using

K5
1

N2 1
XaXaTHTR21 , (4)

where N, Xa, and R represent the ensemble size, the

analysis perturbations, and the observation error co-

variance matrix.

The change between the squared forecast errors in-

troduced by DA at time tn21 is

D(e2)5 eTtnjtn21
Ce

tnjtn21
2 eTtnjtn22

Ce
tnjtn22

5 e
tnjtn21

2 e
tnjtn22

� �T

C e
tnjtn21

1 e
tnjtn22

� �

5 xf
tnjtn21

2 xf
tnjtn22

� �T

C e
tnjtn21

1 e
tnjtn22

� �
, (5)

where C is the chosen error norm matrix. Substituting

the Eq. (3) and applying the dt 5 tn 2 tn21 forecast op-

erator M that propagates the errors from time tn21 to tn
into Eq. (5) gives

D(e2)’ M xatn21
2 x f

tn21jtn22

� �h iT
C e

tnjtn21
1 e

tnjtn22

� �

5 MKdy
tn21

h iT
C e

tnjtn21
1 e

tnjtn22

� �

5 dyTtn21
KTMTC e

tnjtn21
1 e

tnjtn22

� �
. (6)

Note that the forecast operatorM and its corresponding

adjoint MT are merely for symbolic representation in

Eq. (6). None of them are required in the actual calcu-

lation of EFSO.

We further substitute Eq. (4) and the approximations

of HXa
tn21

’Ya
tn21

and MXa
tn21

’Xf

tnjtn21
into Eq. (6) and get

D(e2)’
1

N2 1
dyTtn21

R21Ya
tn21

XfT

tnjtn21
C e

tnjtn21
1 e

tnjtn22

� �
,

(7)

where Ya
tn21

is the analysis perturbation in observation

space, and Xf

tnjtn21
is the forecast perturbation initiated at

time tn21 and valid at time tn.

Due to the limited size of the ensemble, a localization

for error covariance is required to suppress the spurious

long-distance correlations. Applying such localization to

Eq. (7) gives the EFSO impact formulation:

De2 ’
1

N2 1
dyTtn21

R21 r+Ya
tn21

XfT

tnjtn21

� �h i
C e

tnjtn21
1 e

tnjtn22

� �
,

(8)

where r is a localization matrix and + represents an

element-wise multiplication (Schur product).

We can then obtain the impact of each observation by

decomposing the sum of the inner product of the innovation

vector dytn21
and the error sensitivity vector [›D(e2)/›dytn21

]5
(1/N2 1)R21[r+(Ya

tn21
XfT

tnjtn21
)] C(etnjtn21

1 etnjtn22
) into el-

ements that correspond to each observation, so that

(1/N2 1)dytn21,l[R
21[r+(Ya

tn21
XfT

tnjtn21
)]C(etnjtn21

1 etnjtn22
)]l

is the estimated impact of the lth observation. This esti-

mated impact is represented by the short-term forecast

error changes due to the assimilation of the correspond-

ing observation. We define the observations with positive

EFSO impact, which increase the forecast error, as det-

rimental observations. Conversely, the observations with

negative EFSO impact, which decrease the forecast error,

are defined as beneficial observations.

PQC utilizes the EFSO impact as a QC criterion for

the observations in each DA cycle. At each cycle, PQC

first identifies the detrimental observations from all the

assimilated observations in the cycle that was used to

generate the analysis, and such analysis is then updated

by repeating the data assimilation again without using

the detrimental observations. Figure 1, adapted from

Hotta et al. (2017) and CK19, shows the flowchart for

the PQC algorithm. BKGD and ANAL stand for the

pre-PQC background and the pre-PQC analysis in the

sequential data assimilation. PQC_A represents the PQC-

updated analysis, and PQC_B is the subsequent forecast

from PQC_A. PQC_B then serves as the background for

generating ANAL. In the algorithm, a temporary anal-

ysis REF_A is created to serve as a verifying reference in

the EFSO calculation. The PQC algorithm up to the

current time tn can be summarized in the following steps:

1) Starting from the pre-PQC analysis at tn21, run

one regular DA cycle to get both the pre-PQC

background and the reference analysis at tn
(ANALtn21

/ BKGDtn /REF_Atn).

2) Obtain the forecast valid at time tn that is initi-

ated from the PQC-updated background at tn21

(PQC_Btn21
/FCSTtn).

3) Compute the dt-EFSO impact (i.e., the observation

impact on the forecast valid dt later) and identify the

detrimental observations at time tn21. Note that the

EFSO impact for the observations at time tn21 is

computed at time tn when REF_Atn becomes avail-

able (FCSTtn 1BKGDtn 1REF_Atn /EFSOtn21
).

4) Reject the detrimental observations based on

the dt-EFSO impact and assimilate the beneficial

SEPTEMBER 2020 CHEN AND KALNAY 3913

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 09/22/22 02:56 PM UTC



observations using PQC_Btn21
as the background to

obtain the PQC-updated analysis valid at tn21,

which contains no identified detrimental impact.

Note that this PQC-update for the analysis valid at

tn21 takes place at time tn when the observations

and the reference analysis valid at tn become avail-

able (EFSOtn21
1PQC_Btn21

/PQC_Atn21
).

5) The PQC-updated background valid at tn is initiated

from the PQC-updated analysis at tn21 and serves as

the background for the production of the next pre-

PQCanalysisat tn (PQC_Atn21
/PQC_Btn /ANALtn).

We note that PQC is using the EFSO impact in this

study, but it could also use instead the adjoint or the

hybrid formulations of FSO impact.

We further define the ‘‘current’’ PQC-update at cur-

rent time tn as the production of PQC_Atn from the pre-

PQC analysis ANALtn, which in turn benefits from all

the past PQC-updates (‘‘accumulated’’ PQC-update).

The pre-PQC analysis ANALtn contains only the infor-

mation up to the current time tn, while the current PQC-

update (production of PQC_Atn) requires the ‘‘future’’

information (REF_Atn11
and hence the observations

required to make it) from the next cycle at time tn11. It

should be emphasized that we are promoting the ap-

plication of the accumulated PQC-update into opera-

tional use since the current PQC-update is not feasible

in operational applications as it requires future in-

formation. However, as we will show in the results,

the accumulated improvement is much larger than the

current improvement, supporting the PQC application

in operations.

3. Experimental design

a. DA system configuration

In this paper, we aim to explore the impact of cycling

PQC using an intermediate complexity system to act as a

bridge between the promising results obtained in CK19

using the simple Lorenz (1996) model and a full opera-

tional system. For this purpose, we use the GFS-LETKF

system developed by Lien et al. (2016), which reduces

the complexity of the DA system and uses a lower res-

olution of the spectral GFS model (compared to the

operational systems) in order to expedite the execution

of the experiments while still using a realistic configu-

ration of a forecasting model, data assimilation system,

and observations.

The underlying philosophy behind the design of the

GFS-LETKF system is to have a simple configuration

of a DA system coupled with the realistic spectral GFS

model to allow fast experiments exploring innovative

data assimilation techniques. The DA system consists

of a generic and simple 4D-LETKF core code developed

by Takemasa Miyoshi, and an interface to the spectral

GFS model (available at https://github.com/takemasa-

miyoshi/letkf). It preserves the flexibility to switch the

GFS resolution from T62 to T574, and the choice of ob-

servation operators using the built-in conventional data

FIG. 1. Flowchart of cycling Proactive QC algorithm [adapted from Hotta et al. (2017) and

CK19]. BKGD and ANAL stand for pre-PQC background and analysis in sequential data

assimilation. PQC_A represents the PQC-updated analysis, and PQC_B is the subsequent

forecast from PQC_A. PQC_B serves as the background for generating ANAL. In the al-

gorithm, a temporary analysis REF_A is created to serve as the verifying reference for EFSO

computation. We verify the performance of the proposed PQC scheme by comparing the

ANAL and the forecasts initiated from ANAL in the PQC experiments with the control

analysis and forecast unless otherwise stated.
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operator (simple spatial interpolation for PrepBUFR

data) or the Gridpoint Statistical Interpolation (GSI)

system fromNCEP to ingest advanced observations such

as the satellite radiances. For computational efficiency,

we chose to perform the experiments with a T62 reso-

lution and used the built-in simple observation operator.

We used 32 ensemble members for this low-resolution

configuration as in Lien et al. (2016).

We assimilated at a 6-h interval only the conventional

observations from the PrepBUFR dataset provided by

NCEP (see Table 1 for the assimilated observation

types). In our 4D-LETKF setup, the observations within

the 6-h DA window were binned into 7 time slots cen-

tered on the hour from the start (23 h) to end (13 h)

time in order to account for the background evolution

within the window. The error statistics of the observa-

tions are also extracted from the same dataset. Adjusting

to the low-resolution of our system, the observations

were superobbed/thinned (see Table 2) to at most only

one observation per 3D model grid point for each data

type and variable in one assimilation window, which

reduced the data density to one-third of the original.

Since only the conventional observations fromPrepBUFR

data were assimilated, the ozone concentration and the

sea surface temperature were obtained from the NCEP

Climate Forecast System Reanalysis (CFSR; Saha et al.

2010) to prevent the system from long-term drift, al-

though this should not be a significant issue for our ex-

perimental length (one month). Note that both the

control and the PQC experimental runs were ingesting

the CFSR data for these nonmeteorological prognostic

variables so that it is a fair comparison. Additionally,

the CFSR dataset, which has a much higher resolution

(T382) and assimilates many more observations (in-

cluding the satellite radiances) also served as the veri-

fying truth for measuring the improvement obtained

from the PQC-updates. The performance of both the

control and the PQC-updated analyses and forecasts

were measured with both root-mean-squared error

(RMSE) and BIAS against the CFSR to show the

geographical distribution of the impact. We stress

here that the CFSR was not used in the EFSO cal-

culation, and the verifying reference REF_Atn was

obtained by assimilating the observations at tn to the

TABLE 1. Description, observed variables, and total counts of each observation type.

Observation types Descriptions Variables Counts

ADPSFC Surface land (synoptic, METAR) reports Ps 326 724

ADPUPA Upper-air (raob, PIBAL, RECCO, DROPS) reports Q, T, U, V 4 092 312

AIRCAR MDCRS ACARS aircraft reports T, U, V 4 087 880

AIRCFT AIREP/PIREP, AMDAR, MDCRS/ACARS, TAMDAR aircraft reports T, U, V 3 300 461

PROFLR Wind profiler and acoustic sounder (SODAR) wind reports U, V 275 700

QKSWND QuikSCAT scatterometer data (reprocessed) U, V 980 575

SATWND Satellite-derived wind reports U, V 5 649 557

SFCSHP Surface marine (ship, buoy, C-MAN platform) reports Ps, Q, T, U, V 243 199

SPSSMI SSM/I retrieval products (reprocessed wind speed, tpw) U, V 835 222

SYNDAT Synthetic tropical cyclone bogus reports U, V 334

VADWND Vertical azimuth display (VAD) winds from WSR-88D radars U, V 240 261

TABLE 2. Superobing and thinning of each observation type. A description of the observation types can be found in Table 1.

Observation types Methods

ADPSFC Leave only one observation closest to the base time

Avg observations with minimum errors within the 3D grid

ADPUPA Avg all observations in the vertical grid

AIRCAR Avg observations with minimum errors within the 3D grid

AIRCFT Avg observations with minimum errors within the 3D grid

PROFLR Avg all observations in the vertical grid

Leave only one observation closest to the base time

QKSWND Avg observations with minimum errors within the 3D grid

SATWND Avg observations with minimum errors within the 3D grid

SFCSHP Avg observations with minimum errors within the 3D grid

Leave only one observation at the base time and do not use any observations off the base time

SPSSMI Avg observations with minimum errors within the 3D grid

SYNDAT Avg observations with minimum errors within the 3D grid

VADWND Avg all observations in the vertical grid

Leave only one observation closest to the base time
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pre-PQC background BKGDtn from the same run.

The adaptive multiplicative inflation (Miyoshi 2011,

prior variance of the inflation parameter: ybi 5 0:042) and

the relaxation to prior perturbation (RTPP; Zhang et al.

2004, relaxation parameter: a 5 0.5) were added to ac-

count for model error. A fixed horizontal length scale

of 500 km and a vertical length scale of 0.4 scale height

were chosen for the R localization (see Greybush et al.

2011), accounting for the insufficient ensemble size.

The above setup was extensively used in Lien et al.

(2016, 2018).

Note that the Proactive QC scheme is proposed to be

complementary to standard QC checks, and not their

replacement. Several QC checks were implemented into

our GFS-LETKF system. First, the observations with

observational error larger than the prescribed gross

error thresholds (107) were not assimilated. Second,

some observation types were excluded from assimi-

lation mainly following the PrepBUFR report types

used by Global GFS and GDASGSI analyses (refer to

https://www.emc.ncep.noaa.gov/mmb/data_processing/

prepbufr.doc/table_2.htm). Third, we also filtered out

the observations with bad quality markers from the

PrepBUFR dataset. Fourth, the observations with inno-

vation 5 times larger than its error provided in the

PrepBUFR dataset were also excluded. These standard

QC checks were applied both in the control and the PQC

experiments. Hence the experiments show the PQC im-

provement in addition to the standard QC checks.

The experimental period spans from 0000 UTC

1 January to 0000 UTC 6 February 2008, with the first

5 days used as the DA spinup period. The period is chosen

simply based on the availability of an existing database

used by our group, and the choice of the experimental

period should be irrelevant to our conclusions.

b. EFSO and PQC setup

To suppress the spurious error correlations associated

with the insufficient ensemble size, localization is re-

quired in calculating EFSO, as in ensemble DA. We

follow the same localization advection method applied

inOta et al. (2013) andHotta et al. (2017), which advects

the center of the initial localization function using the

equally weighted average of the analysis and 6-h fore-

cast horizontal winds at each grid to keep track of the

flow-following correlation structure. We note that both

studies applied a factor of 0.75 to the advection of lo-

calization function, but such a factor was not applied

in this study. We assumed that the 6-h lead time is short

enough so that it is acceptable to ignore the sensitivity

of the EFSO/PQC performance to the advection factor.

This assumption, however, is worth exploring in the

future. Also, we adopted the moist total energy error

norm (MTE; Ehrendorfer 2007) for C in Eq. (8) to ac-

count for all the variables of meteorological interests

and combine their different units naturally in terms of

energy. Rather than calculating the regional EFSO im-

pact for just the forecast skill dropout regions as in Ota

et al. (2013) and Hotta et al. (2017), we calculated the

EFSO impact for the entire global domain for all vari-

ables. Yet, the long-range impact of an observation was

still limited by the applied localization, hence only the

subdomain within the localization radius had an actual

impact in the total error metric. We note that EFSO

impact is norm dependent and the forecast changes by

PQC are subject to the choice of such error metric.

For the selection of the EFSO verifying lead time, Ota

et al. (2013) performed experiments with 24-h lead time,

butHotta et al. (2017) found that the 6-h lead time is long

enough to perform PQC, in the sense that the EFSO

impacts using the two lead times identified essentially the

same detrimental observations. Using a lead time as short

as 6h is favorable for the operational use of PQC for two

reasons. First, the lead timematches theDAwindow, and

hence the 6-h forecast perturbationXf

tnjtn21
required by the

EFSO calculation is available from the EnKF system.

Second, the subsequent analysis used as verifying refer-

ence is only one cycle later than the PQC-updated analysis.

Using lead times longer than 6h will increase the compu-

tational costs on extending the ensemble forecast length

from the original length for EnKF and the additional in-

termediate DA cycles between the PQC-updated analysis

and the analysis used as verifying reference. Therefore, we

used the 6-h lead time in the experiments in this study.We

note that even shorter lead times might be appropriate

for a regional system with shorter update cycles.

This study aims to demonstrate that cycling PQC

performs well not only in Lorenz (1996) model as shown

in CK19 but also in a realistic model using real obser-

vations. Additionally, we would like to address the fol-

lowing two important questions: 1) How important is the

benefit from the accumulation of the successive PQC

improvement on the analyses (i.e., the accumulated im-

pact of PQC when it is cycled)? More precisely, is the

accumulated PQC-update large enough so that we could

skip the current PQC-update, which requires waiting 6h

for future observations? 2) How sensitive is cycling PQC

to the number of rejected observations? To answer these

questions, four experiments were conducted and sum-

marized in Table 3. The ‘‘CNTL’’ is the control run that

did not reject any detrimental observations identified

by EFSO (no PQC). The ‘‘PQC’’ experiments reject

the observations following the threshold method in

CK19 which rejects any observations having EFSO

impact larger than the threshold for the specified re-

jecting percentage. The threshold for each rejecting
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percentage was obtained by the corresponding percen-

tile value of the EFSO impact statistics from the CNTL.

For example, the most detrimental 10% of the obser-

vations were those having an impact larger than the 90th

percentile value from the CNTL, since positive EFSO

values represent detrimental impacts. In this case, the

90th percentile value is the threshold for the rejecting

percentage of 10%.

A schematic of the PQC algorithm (adapted from

CK19) in sequential data assimilation is shown in Fig. 1.

The schematic shows that the reference analysis re-

quired to perform EFSO would be using information

from the next cycle. For instance, calculating EFSO for

observations at time tn21 requires the reference analysis

at time tn. And the reference analysis at time tn11 would

be required if we were to perform a current PQC-update

and produce the PQC-updated analysis PQC_A at tn.

By contrast, the pre-PQC analysis ANAL contains only

information up to time tn. To make a fair assessment on

the PQC performance so that the results are applicable

to the operational NWP, we did not examine the accu-

racy of the PQC-updated analysis (PQC_A), which was

obtained from the current PQC-update that requires

information from the next cycle tn11 and hence would

not be possible in operations. Instead, the pre-PQC

analysis (ANAL) and the subsequent 10-day forecast,

which contain only information up to time tn of the

PQC experiments, were used to compare against the

CNTL analysis and forecast. In addition to absolute

RMSE, we also used relative RMSE reduction 5
[(RMSEPQC 2 RMSECNTL)/RMSECNTL] to show the

percentage of the control RMSE reduced by PQC.

To examine the benefit from the successively im-

proved analyses and the accumulated improvement in

the backgrounds, we differentiated the improvement

from the current PQC-update in addition to that from

the accumulated PQC-update by comparing the forecasts

initiated from the pre-PQC analyses (ANAL) and the

PQC-updated analyses (PQC_A). The difference be-

tween the forecasts from ANAL and those from PQC_A

provides an estimate of the improvement made only by

the current PQC update. The ‘‘PQC-10,’’ ‘‘PQC-30,’’ and

‘‘PQC-50’’ experiments compare the PQC performance

with 6-h lead time for different observation rejecting

percentages of 10%, 30%, and 50%, respectively. Here,

the 50% simply stands for all the detrimental observa-

tions since the averaged detrimental percentage of ob-

servations is about 50% as widely reported from most

applications (e.g., Gelaro et al. 2010).

This study aims to show a proof of concept that PQC

works not only for a simple model but also for the re-

alistic GFS model that assimilates real observations. To

simplify the investigation and implementation of PQC

into the system, the straightforward data denial method,

equivalent to the PQC_Hmethod in CK19, was adopted

for PQC-update. The PQC_Hmethod is not optimal for

PQC-update as shown in CK19 due to its higher com-

putational requirements, and the unintentional inflation

of the ensemble (compared to the pre-PQC analysis)

that leads to an inconsistency between the increased

spread and the more accurate PQC-updated analysis.

However, in this study, such unintentional change in

spread by the data denial was alleviated by the RTPP

(Zhang et al. 2004) and the adaptive inflation (Miyoshi

2011) applied in our DA system. Since the posterior

perturbations were relaxed toward the prior perturba-

tions, and the posterior spreads of both the pre-PQC and

the PQC-updated analyses (ANAL and PQC_A) were

adjusted based on the same innovation statistics de-

rived by Desroziers et al. (2005), we did not experience

the same degradation when rejecting too many (e.g.,

50%) observations using the data denial (PQC_H)

method as we did in CK19, where no relaxation method

was applied. We showed in CK19 that the gain-reusing

(PQC_K) method is more accurate since it reuses the

original gain matrix that produced the pre-PQC anal-

ysis (ANAL) and it preserves the ensemble spread of

the PQC-updated analysis (PQC_A) to be the same as

the pre-PQC analysis (ANAL). Thus, the PQC_K

method is a cheaper and more accurate update method

than PQC_H, which we used in this study, but, on the

other hand, implementing PQC_K in this study would

require a considerable additional effort in modifying

the DA system. We, therefore, used PQC_H, but note

that PQC_K should be further explored and compared

in future studies.

TABLE 3. A list of experiments performed with the GFS-LETKF system with the PQC configurations. The thresholds for the rejecting

percentages were obtained by their corresponding percentile values of EFSO impact statistics from the CNTL. Any observations having

EFSO impact larger than such threshold are rejected in each experiment.

Expt name Cycling PQC Threshold (J kg21) Rejecting percentage Note

CNTL No — — Control

PQC-10 Yes 1.67 3 1025 10% Full cycling PQC

PQC-30 Yes 1.41 3 1026 30% Full cycling PQC

PQC-50 Yes 0 50% Full cycling PQC
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4. Results

a. EFSO impact

Figure 2 shows the geographical distribution of the

observations assimilated during the experimental period

over the world, and Fig. 3 the corresponding distribu-

tion of each observation type. Note that, for clarity, only

one of every 400 observations are shown in Fig. 2. For

both figures, the detrimental observations (red) appear

mixed with the beneficial observations (blue), regardless

of the observation type. The observations with larger

impacts were generally distributed in regions with

fewer radiosondes like the oceans in the Southern

Hemisphere. It is noticeable that the individual obser-

vational impact in the United States and Europe was

generally much smaller than that anywhere else in the

world due to the high density of observations in these

regions. And the impact magnitudes were typically

larger over the mid- to high-latitude oceans and lands,

which may result from the combined effect of data

scarcity and the prevailing baroclinic instability. There

seemed to be more clustering of detrimental ADPSFC

observations in Central America, Central Africa, South

Asia, and Western Australia. The SFCSHP observa-

tions provided a very large beneficial impact over the

oceans in the Southern Hemisphere. Each of the

SYNDAT observations may provide a significant con-

tribution to the forecasting of tropical cyclones given

their generally large impact magnitude. These charac-

teristics of the impact geographical distribution deserve

a more focused analysis.

The EFSO total impact and the impact per observa-

tion of each observing system type are summarized in

Figs. 4a and 4b, respectively. Table 1 provides a brief

description of the observation types (based on the

NCEP documents at https://www.nco.ncep.noaa.gov/

sib/decoders/BUFRLIB/toc/prepbufr/prepbufr_bftab/).

Consistent with the general findings from past studies

(e.g., Zhu and Gelaro 2008; Cardinali 2009; Gelaro et al.

2010; Lorenc andMarriott 2014; Ota et al. 2013; Sommer

and Weissmann 2014), the most beneficial observation

types were the satellite feature-trackingwinds, upper-air

soundings, and aircraft measurements due to their ad-

vantages in quality, number, and/or location. Surprisingly,

the surface pressure measurements from synoptic re-

ports and aviation routine weather reports (METARs)

had a net slightly detrimental impact in this experiment.

Further investigation shows that the majority of the

detrimental impact of this observation type originated

from its update in the moisture field. The moist total

energy norm we adopted for EFSO computation in-

cludes the kinetic energy (u and y winds), potential en-

ergy (temperature and surface pressure), and moisture

norm (specific humidity). We found that the surface

pressure data was very beneficial in both the kinetic and

potential energy norms, but it was more detrimental in

the moisture norm (not shown), indicating that the

moisture update from surface pressure data degraded

the analysis and forecast. The synthetic tropical cyclone

bogus reports (SYNDAT) rank as the top beneficial

type on the impact per observation, indicating that they

had a key role in improving at least some of the forecasts

of tropical cyclones.

Operationally, each observation is received at differ-

ent times throughout the analysis window, so we ex-

plored how this time difference relates to their impact.

Our 4D-LETKF system binned the asynchronous ob-

servations into seven time slots from the start (23 h)

to the end (13 h) time of the 6-h window, so that each

slot was on the hour, and the fourth slot centered at

the analysis time. Figure 4c shows the averaged impact

per observation for each time slot. It is clear from this

figure that the observations in the first two time slots

were significantly less beneficial when compared to

the five later time slots, indicating that the later ob-

servations provided more useful information. On the

other hand, the impacts of the last five time slots were

very similar.

b. Global distribution of PQC error reduction

Figure 5a shows the global view of the monthly

averaged analysis and 24-h forecast error reduction

by the accumulation of PQC-updates (i.e., pre-PQC

analysis/ANAL and subsequent forecast without using

any future information) for several representative vari-

ables: u wind and y wind at 500hPa, temperature at

700 hPa, and specific humidity at 850hPa (using exper-

iment ‘‘PQC-30’’ as an example). It is clear that PQC

FIG. 2. Geographical distribution of one of every 400 obser-

vations throughout the experimental period and their EFSO

impact (J). Red (blue) represents detrimental (beneficial) ob-

servations. The magnitude of EFSO impact is shown by the size

of each dot.
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consistently reduces the analysis error almost every-

where on the globe for all the variables. For wind and

temperature, the reduction is greatest over the oceans in

the Southern Hemisphere, while the improvement in

specific humidity mainly takes place in lower latitudes

over the ocean. The distribution of the error reduction is

probably associated with the dominant dynamical char-

acteristics and observation density. Figure 5a indicates

that the mid- to high-latitude oceans in the Southern

Hemisphere may have more ‘‘room for PQC improve-

ment’’ due to the lack of conventional observations, as

well as the prevailing baroclinicity over the region. The

high resemblance between the error reduction from the

accumulated PQC-update in 24-h forecasts and that in

analyses shows that the PQC improvements were quite

persistent during the first 24h of the forecasts.

The right side of Fig. 5b shows the samemap view, but

for the error reduction produced only by the current PQC-

updates (i.e., the difference between the PQC-updated

analysis/PQC_A and the pre-PQC analysis/ANAL) that

would use the 6-h future observations. Themagnitude of

error reduction by the current PQC-updates was con-

siderably smaller than that obtained by the accumulated

past PQC-updates. Note the values are doubled to show

some features with the same color bar as in Fig. 5a. The

current PQC-updates, which we did not include because

they would require using future observations, improved

very slightly the wind and temperature analyses on the

Eurasian continent and northern Pacific, and the hu-

midity analysis in the Maritime Continent, Australia,

Central America, and the southern part of SouthAmerica.

In North America, the wind and temperature analyses

showed slight degradation by the current PQC-updates.

However, such slight degradation became an improve-

ment after 24 h of model forecast. The 24-h wind and

temperature forecasts improved the most in the midlati-

tudes in both the Northern and Southern Hemispheres,

and the humidity forecasts showed more improvement

FIG. 3. As in Fig. 2, but for different observation types. All observations are shown for ADPSFC, PROFLR, SFCSHP, SYNDAT, and

VADWND. One of every 100 observations are shown for ADPUPA, AIRCAR, AIRCFT, and SATWND. For QKSWND and SPSSMI,

one of every 20 observations are shown. A description of observation types can be found in Table 1.
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over the lower latitudes, which is consistent with the error

reduction pattern by the accumulated PQC-updates.

The vertical profiles of the analysis and 24-h forecast

RMSE are shown in Fig. 6 for u wind, temperature, and

specific humidity. The black lines represent the CNTL

experiment. PQC-50 (magenta) significantly reduced

the analysis and forecast errors at all pressure levels. For

u wind and temperature, the control RMSE was largest

in the Southern Hemisphere at the upper levels, while

the majority of the error in specific humidity came from

lower- to midlevels in the tropics. The PQC error re-

duction at each level was roughly proportional to the

error magnitude for u wind and specific humidity. For

temperature, the error reduction was almost uniformly

distributed throughout each level.

c. Comparison of accumulated and ‘‘current’’ PQC
improvements

To assess the benefit of cycling PQC as opposed to

noncycling PQC, and demonstrate that cycling PQC

improves the quality of analyses and forecasts even

without using any future information, we compared the

error reduction of forecasts initialized from the pre-

PQC analysis (ANAL) and the PQC-updated analysis

(PQC_A). The former contains only the improvement

from previous PQC-updates, and the latter includes the

latest current PQC-update using the future analysis as

verifying reference for evaluating EFSO impact for

current observations. We refer to the PQC-update in

ANAL as the accumulated update, PQC_A as the total

update, and the difference between the two as the cur-

rent update. The current error reduction is defined as

the analysis improvement obtained by instantaneous

PQC-update in the current DA cycle, while the accu-

mulated counterpart is defined as the improvement

originating from the improved background due to pre-

vious PQC-updates. The main benefit of cycling PQC

is the accumulated improvements throughout the past

DA cycles since the improved subsequent forecast from

the PQC-updated analysis serves as a more accurate

background and thus further enhances the accuracy of

the following analysis. From a fully cycling PQC ex-

periment, we extracted the current component from

total improvement by comparing the pre-PQC analysis

(ANAL) and its subsequent forecast, which were only

improved by the past PQC-updates (but not the current

PQC), with the analysis (PQC_A) and the forecast di-

rectly updated by the latest PQC. Figure 7 compares the

10-day relative forecast error reduction of the total, ac-

cumulated, and current improvements in the PQC-50

experiment. As we can see, the primary advantage of

cycling PQC came from the accumulation of past PQC-

updates. The current error reduction (due to the future

observations not available operationally) was negligible

in the tropics and the Southern Hemisphere. The future

observations would introduce improvements of only

less than 5% relative to the CNTL in the NH, whereas

the accumulated PQC improvement provides 13% or

more error reduction, which is consistent with the results

in Fig. 5. Interestingly, the benefit from the accumulated

FIG. 4. (a) EFSO total impact (J) and (b) averaged EFSO impact

per observation (J) for each PrepBUFR observation type in de-

scending order. (c) Averaged EFSO impact per observation (J) for

seven 4D-LETKF time slots that accounts for asynchronous ob-

servation time. The detrimental impact is shown in red. (See

Table 1 for the descriptions of the observation types.)
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impact has a more significant contribution to the total

PQC impact in the tropics and Southern Hemisphere

compared to that in the Northern Hemisphere, where

the conventional observations aremuchmore abundant.

It is worth pointing out that the majority of the most

reliable observing system, the radiosondes, is located in

the Northern Hemisphere.

The fact that the accumulation of past improvements

contributes to a major portion of the full impact of cy-

cling PQC has two important implications. First, the

PQC improvement had a long-lived impact that remains

even after several DA cycles. Second, this supports the

feasibility of implementing PQC in operational NWP.

Operational centers need to initiate the forecast as soon

as the analysis is completed to deliver timely forecast

products, so we can only afford to perform PQC after

the current forecast is done and released, meaning that

the current update from PQC is not possible in opera-

tions. Therefore, the huge dominance of the accumu-

lated past corrections provides encouraging evidence

that even without the latest current update from PQC

in the current cycle, the forecast improvement from

the accumulated PQC can still be close to that from the

total PQC-update.

To illustrate the global forecast error reduction from

a different perspective, we now define the gained fore-

cast lead time as the dt such that RMSE_PQCt01dtjt ’
RMSE_CNTLt0 jt, where t and t0 are the forecast initial

time and the CNTL forecast valid time. A schematic of

the definition is shown in Fig. 8. The gained forecast lead

time represents the extra forecast time for the accumu-

lated PQC-updated forecast error to reach the same

level as the CNTL forecast error. We show the gained

forecast lead time from the accumulated PQC-update

in the experiment PQC-50 for the u wind at 500 hPa,

the temperature at 700hPa, and the specific humidity at

850 hPa in Fig. 9. The result shows that for most of the

forecast times, the gained forecast lead time was more

than 12 h, and for specific humidity, it was over 18 h.

Note the gray area masks the periods when adding the

forecast time and the gained lead time exceed the 10-day

forecast range.

d. Sensitivity of forecast improvement to the
rejecting percentage of observations

One of the major focuses in Hotta et al. (2017) was on

designing the data-denial strategy, due to the specula-

tion that rejecting all the detrimental observations could

lead to forecast degradation since they consist of close to

50% of the total counts. However, as shown in CK19

using Lorenz (1996) model, rejecting the most detri-

mental 10% observations based on global EFSO impact

contributed to the majority of the forecast improve-

ment, and the maximum improvement was obtained

by removing nearly all the detrimental observations

(around 30%–50%). Here we examine whether this

FIG. 5. (a) (left) Monthly mean analysis and (right) 24-h forecast RMSE changes from the accumulated PQC-update for the uwind and

y wind (m s21) at 500 hPa, temperature (K) at 700 hPa, and specific humidity (g kg21) at 850 hPa in experiment PQC-30. (b) As in (a), but

for the doubled RMSE changes from the ‘‘current’’ PQC-update.
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property is also valid for this higher-dimensional and

realistic GFS model.

In Fig. 10, we show the relative error reduction of

forecasts valid from 0–240h and compare the improve-

ments from rejecting the most detrimental 10%, 30%,

and 50% of observations. For most regions and vari-

ables, the relative improvement was the largest within

12 h forecasts, ranging from 8%–25% and started de-

caying afterward. After 5 days, the improvement re-

mained at about 3%–14%, and not until after 10 days

did the forecast improvement vanish. Consistent with

the previous results in CK19 using Lorenz (1996) model,

the majority of improvement came from rejecting the

most detrimental 10% of observations, and the improve-

ment seemed to saturate at rejecting about the most

detrimental 30%–50% of observations (PQC-50 did

not provide too much additional improvement over

PQC-30). This result dispels the speculation that the

denial of an excessive number of the detrimental

observations may be harmful, by showing that the

forecast was improved rather than degraded when

essentially all of the detrimental observations were

denied.

e. Biases in analysis and forecast after PQC update

To ensure the analysis and forecast RMSEs are not

reduced at the cost of increased bias, we examine the

differences in the bias in analysis and forecast between

the CNTL and the PQC experiments. The bias assess-

ment shown here was calculated against the CFSR

FIG. 6. Monthly mean profile of analysis (solid) and 24-h forecast (dashed) RMSE in PQC-50 (magenta) and CNTL (black) in u wind

(m s21), temperature (K), and specific humidity (g kg21) at each pressure level for the Northern Hemisphere (208–908N), the tropics

(208N–208S), and the Southern Hemisphere (208–908S). The dashed gray line indicates zero RMSE.
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reanalysis. The vertical profile of bias in the analyses

and 24-h forecasts is shown in Fig. 11. It is clear that the

bias either did not change much or actually became

smaller after applying the PQC-updates. The biases of

the u wind in NH and SH, as well as the specific hu-

midity in NH, did not change much, while the biases in

other variables were strongly reduced by applying

PQC. This was also true for the bias evolution

throughout 10-day forecasts as shown in Fig. 12. The

bias assessment against the radiosondes was also cal-

culated and concluded the same that the biases were

either unchanged or reduced by PQC (not shown). We

note that PQC greatly reduced the tropical tempera-

ture bias, as could be expected given the almost

constant RMSE reduction with increasing forecast lead

time in Fig. 10.

f. Case study: 0000 UTC 28 January 2008

In this section, we show a representative case from

the PQC-30 experiment where the accumulated PQC-

update improved the midlatitude 5-day forecast by

recovering a developing baroclinic instability that was

initiated at 0000UTC 28 January 2008. The geopotential

height at 500 hPa and the sea level pressure are shown in

Figs. 13 and 14, respectively. In the figures, there were

no clear differences between the TRUTH (CFSR; left

column), PQC-30 (middle column), and CNTL (right

column) at the analysis time. After 3 forecast days, a

FIG. 7. Monthly mean forecast relative RMSE changes (%) initiated from PQC_A (total update; blue), ANAL (accumulated update;

red), and the difference between the two (‘‘current’’ update; green) in u wind at 500 hPa, temperature at 500 hPa, and specific humidity at

700 hPa for the Northern Hemisphere (208–908N), the tropics (208N–208S), and the Southern Hemisphere (208–908S) throughout 10-day
forecast for experiment PQC-50.
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baroclinic structure started to develop in TRUTH. On

day 5, a deep trough had developed at 658N, 08, and a

short-wave trough was located slightly west of 158E. A

surface low pressure located at 658N, 158E is shown in

the forecast on day 5 in Fig. 14. The system was in a

developing stage as the surface low leading the deep

trough at 500 hPa, and the features were intensifying

over time. However, we do not observe these features

in the CNTL (right column in Figs. 13 and 14). With

slight modifications at the analysis time, the accumu-

lated PQC-update recovers the intensifying of both the

surface low pressure and the upper-level trough and

significantly improves the forecast skill. The PQC im-

provement also intensified with the baroclinic system,

showing that the improvement was associated with

an actual dynamical instability. Note that no future

information was used to provide this accumulated

PQC-update.

5. Summary and discussion

This study provides the first demonstration of cycling

PQC in a DA system with intermediate complexity

using a low-resolution realistic spectral GFS model

and a simple LETKF system for assimilating real ob-

servations from the PrepBUFR dataset to bridge the

FIG. 8. Schematic of the gained forecast lead time. Solid curve

shows the perceived error growth with forecast time for the con-

trol experiment; dashed curve shows that for the PQC experiment.

The gained forecast lead time is defined as the dt such that

RMSE_PQCt01dtjt ’RMSE_CNTLt0 jt , where t and t0 is the forecast

initial time and the CNTL forecast valid time.

FIG. 9. Averaged gained forecast lead time (h) by accumulated PQC-update throughout 10-day forecast in u wind (m s21) at 500 hPa,

temperature (K) at 700 hPa, and specific humidity (g kg21) at 850 hPa for experiment PQC-50. The gained forecast lead time shows the

forecast time advantage for PQC forecast error to reach the same error level in CNTL. The gray area masks the period when adding the

forecast time and the corresponding gained lead time exceeds the range of 10 days.
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gap from the idealized setup in CK19 to an operational

configuration.

We demonstrated throughout the globe monthly av-

eraged improvement in the analyses and forecasts across

variables including wind, temperature, and specific hu-

midity throughout all pressure levels. The majority of

the improvement, equivalent to more than 12h of fore-

cast lead came from the removal of the most detrimental

10% of the observations, while the PQC improvement

was the largest in the experiments when rejecting the

most detrimental 30%–50% of the observations, which is

consistent with the results of CK19. And the forecast

improvements from the accumulated PQC-updates las-

ted throughout the 10-day forecast. The accumulated

PQC-updates providedmore than 12-h forecast lead-time

gain in this study. In addition, the analysis and forecast

biases were either unchanged or reduced by PQC. We

also presented a case study showing how the accumulated

PQC-update improved a 5-day forecast by recovering a

developing baroclinic instability in the midlatitude that

had been lost in the control experiment.

One of the key results of this study is identifying the

dominant role of the accumulated PQC impact in com-

parison to the current update. It indicates that there

was a long memory of PQC improvement, and hence

that the current PQC-update, which requires future in-

formation, is not needed to make use of PQC. This is

strong supportive evidence demonstrating the feasibility

FIG. 10. Monthly mean forecast relative RMSE changes (%) in the u wind at 500 hPa, temperature at 500 hPa, and specific humidity at

700 hPa for the Northern Hemisphere (208–908N), the tropics (208N–208S), and the Southern Hemisphere (208–908S) throughout 10 days.
The curves represent the improvement by rejecting overall 10% (cyan), 30% (yellow), and 50% (magenta) of observations with cycling

PQC using 6-h EFSO lead time.
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of PQC in operational implementation as proposed by

Hotta et al. (2017).

In CK19, five PQC-update methods were proposed

and compared. The direct data denial method (PQC_H)

was found to be suboptimal due to the inconsistency

between the improved accuracy of the PQC-updated anal-

ysis and the unintentionally inflated ensemble spread.

This data denial method was nevertheless chosen in this

paper because of its simple implementation, and be-

cause the implementation of RTPP and adaptive in-

flation alleviated this inconsistency. In future studies

exploring an operational implementation, we would still

recommend testing the efficient gain-reusing PQC_K

approach.

We note that almost 50% of observations were detri-

mental on the average as reported by every operational

center and research group. It is very hard to believe all

these (E)FSO-identified detrimental observations were

flawed, and the removal of the flawed observations is

only one of the potential reasons for the PQC im-

provement. Another possible reason is the smoother

aspect of PQC since the observations from the next cycle

were used indirectly to update the analysis (PQC_A)

as explained in CK19. In fact, CK19 pointed out that

the removal of the most detrimental observations

contributes the majority of the forecast improvement

because the associated detrimental analysis increments

from these observations were in the unstable growing

FIG. 11. Monthly mean bias profile at each pressure level of the analysis (solid) and 24-h forecast (dashed) of the accumulated PQC by

rejecting 50% observations (magenta) and the CNTL (black) in u wind (m s21), temperature (K), and specific humidity (g kg21) for the

Northern Hemisphere (208–908N), the tropics (208N–208S), and the Southern Hemisphere (208–908S). The dashed gray line indicates zero

bias. The bias assessment was calculated against the CFSR reanalysis.
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subspace (whereas those from the rest of the detrimental

observations were not). While rejecting nearly 50% of

the observations seems to be aggressive, we would like

to point out that a portion of them did not provide ef-

fective analysis increments from the unstable growing

perspective, which is also supported by the fact that

PQC-50 did not provide much additional improvement

compared with PQC-30. An alternative view of PQC

is that we simply include the observations at tn to

perform a ‘‘buddy-check’’ for the observations at tn21 by

propagating the information through time using EFSO,

and the detrimental observations can be viewed to be

inconsistent with the observations from the subse-

quent cycle. Given the fact that EFSO/PQC is using

observations beyond the analysis time, it would be in-

teresting to compare this approach with performing DA

using a long window (e.g., 12 h) and examine the inter-

action between the two approaches when applied to-

gether (they are not mutually exclusive) to advance the

fundamental understanding of EFSO and PQC.

In the experimental setup of this study, PQC requires

performing twomore analyses (i.e., REF_AandPQC_A)

in addition to the standard analysis (ANAL) in each cy-

cle. Hotta et al. (2017) outlined the implementation of

PQC under the dual-track analysis framework of NCEP

(see their Fig. 9). It was proposed that the PQC for

GDAS final analysis at time tn should take place right

after the GFS early analysis valid at time tn11 is done and

FIG. 12. Monthly mean bias of the accumulated PQC forecast throughout 10-day with rejecting overall 10% (cyan), 30% (yellow), and

50% (magenta) of observations in u wind (m s21), temperature (K), and specific humidity (g kg21) for the Northern Hemisphere (208–
908N), the tropics (208N–208S), and the Southern Hemisphere (208–908S). The black curves represent the mean bias of the control ex-

periment without PQC. The bias assessment was calculated against the CFSR reanalysis.
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use the early analysis as the EFSO verifying reference

(REF_A) to reduce the computational cost of making

an additional temporary analysis. This substitution

would make PQC-update available to GDAS requiring

only one additional analysis (PQC_A), but the trade-off

would be that the PQC-update on GFS long forecasts

will be delayed by two cycles (12 h), instead of the

original one cycle. Also, the GFS early analysis ingests

fewer observations and is inevitably less accurate com-

pared to the GDAS analysis though the difference is

becoming smaller, and the preliminary results (Chen

2018) found that the correlation of EFSO impacts using

GFS analysis and that using GDAS analysis was as high

as 0.95. Such a two-cycle delay between the PQC-

update and the initialization of the GFS forecast and

using the less accurate early analysis as verifying

FIG. 13. The 5-day evolution of the geopotential height (m) forecast and forecast error changes at 500 hPa from one of the cycles

(0000 UTC 28 Jan 2008) in the experimental period. (a) Geopotential height from verifying truth (CFSR) in contours and the forecast

error changes from accumulated PQC-updates in colors. Blue colors represent forecast improvement; red colors represent forecast degra-

dation. The thick lines highlight the contour of 5100m. (b) Geopotential height modified by the accumulated PQC-updates (PQC-30) in

contours and the difference between the modified fields and the verifying truth in colors. Orange colors represent an overestimation of

heights; purple colors represent an underestimation of heights. (c) As in (b), but for the control geopotential height (CNTL).
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reference may result in a smaller improvement when

compared to that shown in this study. Ota et al. (2013)

and Hotta et al. (2017) also formulated a more efficient

method (PQC_K) for PQC-update to replace the direct

data denial PQC_H method adopted in this study. The

PQC_K method, proven to be both more accurate and

cheaper in CK19 using Lorenz (1996) model, will avoid

performing that additional data assimilation for PQC_A

analysis.

For future directions, we point out some components

worth further examination. First, we used PrepBUFR

observations, and thus did not test EFSO on satellite

radiance assimilation. Second, it is known that EFSO

is dependent on the error norm. A past study (Hotta

et al. 2017) showed slight differences between EFSO

impact using dry energy norm and moist total energy

norm. It is worth exploring this dependence of PQC

performance. Third, CK19, using Lorenz (1996) model,

showed that the PQC-updates using the original Kalman

gain (PQC_K method) outperformed, with lower com-

putational costs, the direct data-denial updates (PQC_H

method) used in this study. The superiority of the

cheaper and more accurate PQC_K update method

should be tested in a high-dimensional global model.

FIG. 14. As in Fig. 13, but for sea level pressure (hPa). The thick lines highlight the contour of 985 hPa.

SEPTEMBER 2020 CHEN AND KALNAY 3929

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 09/22/22 02:56 PM UTC



Fourth, the Hybrid EnVar DA system is used in many

operational centers, and the observations assimilated in

the EnKF subsystem within are usually not identical to

those assimilated in themain variational system. For this

reason and the fact that it is more consistent with EnVar,

the hybrid formulation of FSO (Buehner et al. 2018)

may be preferable in such DA systems. It is thus worth

comparing the PQC performance based on both HFSO

and EFSO in an EnVar system.

In addition to operational NWP, PQC can also be

applied to reanalysis applications, which have automatic

access to the future observations and hence the current

PQC-update. The future observations that extend out-

side of the DA window have never been used in current

reanalyses that mimic operational DA systems. The

future observations, by contrast, could be utilized by

EFSO/PQC with the potential to significantly improve

the accuracy of future reanalyses, and this advantage

should be properly exploited.

To summarize, following the promising results of cy-

cling PQC in CK19 using Lorenz (1996) model, we have

shown that cycling PQC further improves the analyses

and forecasts in a realistic NCEP spectral GFS model

that assimilates real conventional observations.
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